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Abstract

Multiphase lattice blocks with periodic structure are analyzed by a continuum-based micromechanical approach. As
a result, effective stiffness tensors, global initial yield surfaces, global damage thresholds, effective inelastic stress—strain
responses and critical yielding temperatures of lattice blocks are established. Applications are given for various types of
elastic and inelastic lattice blocks made of an aluminum alloy. Furthermore, a lattice block with negative effective
Poisson’s ratios is considered, and two types of two-phase lattice blocks that are capable to produce negative effective
coefficients of thermal expansion are presented.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular materials (e.g. metallic foams and bones) are composed of random distribution of open or
closed cells, see Gibson and Ashby (1997) for a detailed discussion. Lattice blocks, on the other hand,
are periodic structures that are based on a repeating unit cell, see Evans et al. (2001) where the advantages,
benefits, design and manufacturing of these structures are discussed, together with comparisons of their
capabilities with cellular materials. In particular, lattice block have been shown to provide very high stiff-
ness and strength with only a fraction of the weight of the parent material. Emerging applications of lattice
block structure range from ultra-light weight multi-functional structures to automobile, aerospace compo-
nents, furniture and sporting goods, Zhou et al. (2004).
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Lattice blocks have been investigated by Wallach and Gibson (2001), Deshpande et al. (2001), Chiras
et al. (2002), and Zhou et al. (2004). Sandwich plates with truss cores are also periodic structures that were
analyzed by Wicks and Hutchinson (2001), Hutchinson et al. (2003), and Wicks and Hutchinson (2004). In
a recent article, Wang and McDowell (2005) derived the initial yield surfaces of various types of periodic
metal honeycombs.

In the previous investigations the periodic structures have been analyzed by a detailed study of the
behavior of the beam members which form the basic elements of the lattice block. Alternatively, in the pres-
ent investigation we offer the use of a micromechanical approach, that has been previously developed for
the prediction of the behavior of multi-phase periodic composites, for analyzing periodic lattice blocks. In
the framework of this continuum mechanics-based approach the repeating unit cell, which forms the build-
ing block of the three-dimensional lattice material, is divided into several parallelepiped subcells. Some of
these subcells are appropriately filled by the material while leaving the other subcells empty. In the micro-
mechanical analysis of the resulting discretized repeating unit cell, the material within a filled subcell is
modeled by the standard multi-axial constitutive law that governs its behavior (the generalized Hooke’s
law for elastic anisotropic materials, inelastic constitutive relations for elastoplastic or viscoplastic materi-
als, etc.).

The specific micromechanical analysis that is employed in this paper to study the response of lattice
blocks is referred to as high fidelity generalized method of cells (HFGMC) which is based on the homog-
enization technique of periodic composites. In the two-dimensional case, HFGMC has been established
and verified by Aboudi et al. (2001, 2003) for thermoelastic and thermoinelastic composites, respectively,
and implemented by Bednarcyk et al. (2004) in the case of inelastic matrix with fiber-matrix debonding.
The three-dimensional version of HFGMC has been presented and verified by Aboudi (2001) where it
was implemented to study the behavior of electro-magneto-thermo-elastic multi-phase composites. This
micromechanical theory has been recently reviewed by Aboudi (2004). In addition to the effective moduli
and inelastic response prediction of the periodic lattice blocks, HFGMC is employed for the generation of
their initial yield surfaces, yield temperatures and damage envelopes. It should be noted that the HFGMC
has been implemented into the recently developed micromechanics analysis code MAC/GMC by NASA
Glenn Research Center, which has many user friendly features and significant flexibility, see Bednarcyk
and Arnold (2002) for the most recent version of its user guides.

The present paper is organized as follows. A brief summary of the three-dimensional HFGMC is given,
and closed-form expressions for the effective stiffness and thermal stress tensors of the multi-phase lattice
block in terms of its mechanical and thermal concentration tensors (which relate the applied external strain
and temperature to the local ones) are provided. Furthermore, in terms of these tensors, expressions are
derived for the establishment of the initial yield surfaces, damage thresholds and the critical temperature
for yielding. The present approach has been applied on six types of lattice blocks made of an aluminum
alloy, including the configurations of Zhou et al. (2004) and Chiras et al. (2002), for the prediction of
the effective stiffness tensors. Next, the micromechanically established elastoplastic response of the lattice
blocks is presented by taking into account the inelastic behavior of the aluminum material. It turns out that
for certain lattice block configurations and loading directions, the elastoplastic stress—strain relation can be
computed for any loading amplitude. In other circumstances, on the other hand, the lattice block loses, at
certain loading directions and amplitudes, its stiffness and stability such that the multiplication of the incre-
ments of global stress and strain is negative. This type of response resembles the well known behavior that
is exhibited by the relation between the load and deflection of nonlinear structures (Majid, 1972). Initial
yield surfaces are presented for the considered types of lattice blocks, and the critical temperatures at which
yielding occurs are computed.

Foam structures with negative Poisson’s ratio have been produced by Lakes (1987) from conventional
open cell polymer foams by constructing a re-entrant type of network. Most of the approaches for the
modeling of materials with negative Poisson’s ratio are based on the analysis of reticulated structures whose
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elements are made of beams. Almgren (1985), for example, analyzed a structure with a negative Poisson’s
ratio that consists of rods, hinges and springs. Similarly, Choi and Lakes (1995) investigated materials with
negative Poisson’s ratios by analyzing spatial struts and curved beams. In the present paper, following our
approach for the micromechanical modeling of periodic structures, a lattice block with three orthogonal re-
entrant configurations that is capable to produce negative effective Poisson’s ratios is presented and
analyzed.

By considering certain types of microstructures composed of at least two materials possessing positive
thermal expansion coefficients, it is possible to generate effective negative coefficients of thermal expansion.
For a two-dimensional array of phases this capability has been presented by Kalamkarov and Kolpakov
(1997). Here, we propose two types of two-phase periodic lattice blocks which are capable to generate
negative effective coefficients of thermal expansion.

2. Micromechanical analysis

The HFGMC micromechanical model is employed herein to predict the effective thermoinelastic prop-
erties of the lattice blocks. This theory has been fully described by Aboudi (2001) in the case of linear elec-
tro-magneto-thermo-elastic materials. Thus, thermoelastic phases can by obtained as a special case. The
inclusion of inelastic of the phases follow the analysis that has been presented by Aboudi et al. (2003) in
the two-dimensional case of continuous fibers. In the present paper, this micromechanical model is briefly
outlined in the following.

This model is based on a homogenization technique for composites with periodic microstructure as
shown in Fig. 1(a) in terms of the global coordinates (xi,x»,x3). The parallelepiped repeating unit cell,
Fig. 1(b), defined with respect to local coordinates (y;,)2,y3), of such a composite is divided into N,, Ng

Repeating Unit Cell

Fig. 1. (a) A multi-phase composite with periodic microstructures defined with respect to global coordinates (x,x,,x3). (b) The
repeating unit cell is represented with respect to local coordinates (y1, 2, 13)-
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and N, subcells in the y;, y, and y3 directions respectively. Each subcell is labeled by the indices (afy) with
o=1,....,N,, f=1,...,Ng and y=1,...,N,, and may contain a distinct homogeneous material. The
dimensions of subcell (rxﬁ y) in the yq, y, and y3 directions are denoted by d,, iz and [, respectively. A local
coordinate system (31, 31”, 3} is introduced in each subcell whose origin is located at its center.

The local (subcell) constitutive equation of the material which, in general, is assumed to be thermoinelas-
tic is given by

o) — C(%ﬁv)(e(ocﬂv) _ elwﬂv)) —T@IAT (1)

where 6™, P @) and T are the stress, total strain, inelastic strain and thermal stress tensors,
respectively, in subcell (afy). In Eq. (1), C*"") is the stiffness tensor of the material in the subcell («fy),
and AT denotes the temperature deviation from a reference temperature. The inelastic strain €**” is gov-
erned either by the Prandtl-Reuss equations of the classical plasticity or by an appropriate viscoplastic flow
rule.

The basic assumption in HFGMC is that the displacement vector u
quadratic forms in terms of its local coordinates (j/ﬁ“), yg’* >,y§’>) as follows:
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where € is the applied (external) average strain, and the unknown terms WE;‘,/; n)), must be determined from
the fulfillment of the equilibrium conditions, the periodic boundary conditions, and the interfacial continu-
ity conditions of displacements and tractions between subcells. The periodic boundary conditions ensure
that the displacements and tractions at opposite surfaces of the repeating unit cell are identical, see Aboudi
(2001) for more details. A principal ingredient in the present micromechanical analysis is that all these con-
ditions are imposed in the average (integral) sense.

As a result of the imposition of these conditions, a linear system of algebraic equations is obtained which
can be represented in the following form:

KU=f+g (3)

where the matrix K contains information on the geometry and thermomechanical properties of the mate-
rials within the individual subcells (), and the displacement vector U contains the unknown displacement
coefficient W 751 . Wwhich appear on the right-hand side of Eq. (I). The mechanical vector f contains
information on the applied average strains € and the imposed temperature deviation AT. The inelastic force
vector g appearing on the right-hand side of Eq. (3) contains the inelastic effects given in terms of the inte-
grals of the inelastic strain distributions. These integrals depend implicitly on the elements of the displace-
ment coefficient vector U, requiring an incremental procedure of Eq. (3) at each point along the loading
path, see Aboudi et al. (2003) for more details.

The solution of Eq. (3) enables the establishment of the following localization relation which expresses
the average strain €*?) in the subcell («fy) to the externally applied average strain € in the form (Aboudi,
2004):

e — A e+ AR AT + D) (4)

*$7) in each subcell is expanded into

where A" and A" are the mechanical and thermal strain concentration tensors, respectively, of the
subcell (afy), and D) is a vector that involves the current inelastic effects in the subcell.

The final form of the effective constitutive law of the multi-phase thermo-inelastic composite, which re-
lates the average stress ¢ and strain €, is established as follows:
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6=Ce— (I"AT +a") (5)

In this equation C* is the effective stiffness tensor and I'* is the effective thermal stress tensor of the
composite, and &' is the global inelastic stress tensor. All these global quantities can be expressed in a
closed-form manner in terms of the mechanical and thermal concentration tensors which appear in Eq.
(4) together with the inelastic term D", see Aboudi (2004) for more details. In particular,

C'=—— Z d hyl, ) ACP) (6)
DHL (afy) of filled subcells )
and
-1
I — (B AR _ s

ofly) of filled subcells

It should be emphasized that lattice blocks are necessarily three-dimensional and numerous subcells might
be needed to analyze the repeating unit cell. Consequently, the number of equations can be large which
makes the memory and computer time requirements formidable. Hence a special strategy has been adopted
according to which whenever a subcell is found to be empty with no material inside it, this subcell is skipped
(rather than being incorporated in the analysis by assuming that its material constants are vanishingly
small). In this way unfilled subcells in the repeating unit cell do not participate in its analysis. As a result,
the number of equations is considerably reduced since only filled subcell participate in the analysis of the
lattice block. However, for a filled subcell neighboring an empty subcell, traction-free boundary conditions
must be imposed at its corresponding surface. The significant saving in the reduction of the number of
equations can be illustrated in the case of a lattice block, which will be considered in the sequel, in which
the repeating unit cell consists of N, = Ny = N, = 34 subcells. Here the number of subcells is 39,304, but the
number of filled subcells is 4216 only. This necessitates the solution of 75,888 equations instead of 707,472
(since there are 18 unknowns in each filled subcell).

In order to generate the initial yield envelopes and the temperature at which yielding initiates, the
mechanical and thermal stress concentration tensors must be established. By combining Eqgs. (1), (4) and
(5), in the absence of inelastic effects, one obtains after some manipulations that the average stress in a sub-
cell is given in terms of the externally applied average strain and temperature by

) = C) A L g AT (8)
where
R8s — @) Ath(by) _ o)

In terms of the externally applied stress and temperature, on the other hand, the average local stress is given
by

g = Bg L BhOPIAT (9)
where

B — ) A (#h7) [C"]fl
and

B — ) A @87 [C*]fll”* + )

The quantities B®*” and B™*"" are referred to as the mechanical and thermal stress concentration tensors,
respectively.
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Consider a lattice block made of a metallic material that is subjected to an externally applied thermo-
mechanical loading. Let us assume that yielding of material occupying subcell (afy) is determined from
the von Mises condition:

gézﬁ?) —Yv (10)
In Eq. (10), the equivalent stress (/") is defined by

3 1/2
0‘@3’?7') — 3 deva™) dey g

where deve(*?) is the deviator of /") and Y is the yield stress of the metallic material in simple tension.
Accordingly, initial yielding of the lattice block is determined from the first subcell stress **”) which fulfills
condition (10). Consequently, based on the present micromechanical theory, initial yield envelopes of a lat-
tice block that is subjected to a given external loading & can be generated.

Traction-free lattice blocks, i.e., & = 0, that are subjected to temperature variation do not yield. This is
an expected result, since the metallic material that form the array can freely expand without developing any
internal local stresses. Indeed, under these conditions the thermal stress concentration tensor B = 0, so
that ) = 0, see Eq. (9). Furthermore, the effective coefficients of thermal expansion of the lattice block
are identical to the thermal expansion coefficients of its metallic material. Yielding at elevated temperature,
on the other hand, can be obtained in a constrained lattice block by preventing it from expanding, namely
by imposing that € = 0. In this situation, the local stresses 6**”) can be determined from Eq. (8) and initial
yielding is determined by the first subcell which satisfies Eq. (10).

It is also possible to utilize Eq. (9) to predict damage thresholds when the lattice block is subjected to a
specified isothermal external loading &. To this end the damage criterion of Lemaitre and Chaboche (1990),
which expresses the critical strain energy release rate by loss of stiffness, can be employed. It is given by

(@hy)

2 2\ :
laeq<§(1—|—v)—|—3(1 —2v)(04/0eq) ) ] =0 (11)

where v s the Poisson’s ratio of the isotropic phase, aﬁfﬁ " is the hydrostatic pressure and ¢* is a material

parameter which specifies the stress at which damage occurs at a uniaxial state test. This expression, from
which damage envelopes (that provide the onset of failure) can be generated, replaces the von Mises yield
criterion (10).

@B §

3. Applications

The derived micromechanical equations are implemented herein to investigate various types of lattice
blocks. These include elastic, elastoplastic, a lattice block that can provide negative Poisson’s ratios, and
two-phase lattice blocks that provide negative coefficients of thermal expansion (although the coefficients
of thermal expansion of the materials are positive). For simplicity, the lengths, breadths and heights of
all subcells were taken to be identical (cubic subcells). Changing these geometrical parameters results in
variations of the material’s volume fraction of the lattice block and the type of the effective anisotropy that
it exhibits.

It should be mentioned that not every lattice block configuration is admissible. Some configurations are
kinematically unstable and generate a singular matrix K in Eq. (3). This situation is well known in the anal-
ysis of large scale articulated structures as discussed, for example, by Armenakas (1988).
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3.1. Elastic lattice blocks

Consider lattice blocks in which the material is assumed to behave as a perfectly elastic isotropic alumi-
num alloy at high temperature whose Young’s modulus, Poisson’s ratio and coefficient of thermal expan-
sion are: 55GPa, 0.3 and 23 x10°%°C~!, respectively (it should be remembered that the effective
coefficients of thermal expansion of the lattice block would have the same value of 23 x 10~¢°C™!).

The lattice block whose unit cell is shown in Fig. 2 models an open cell material as discussed, for exam-
ple, by Gibson and Ashby (1997). The solid material is distributed in linear members that form the cell
edges (as opposed to the closed-cell case in which the solid material is distributed in little plates that form
the faces of the cells). The unit cell consists of N, = Ng= N, = 16 cubic subcells and the resulting volume
fraction of the material is: vy = 0.16. It should be noted that the volume fraction of a lattice block is defined
by the ratio between the total volume of filled subcells to the total volume of the filled and unfilled subcells.
The specific configuration that is shown in Fig. 2 generates a composite whose effective behavior possesses a
cubic symmetry (i.e., it is characterized by three independent material constants). The effective stiffness ma-
trix C* of this lattice block is given in Appendix A, Eq. (A.1).

The characteristic cell of Fig. 2 differs from a repeating unit cell by a proper adjustment of the size and
shape of the cross section of the elements located at the surfaces. Therefore, in the sequel the term repeating
unit cell will be continuously used.

Next, let us consider a lattice block composed of open cells the faces of which contain diagonal elements
(to be referred to as “open cell-diagonal”) as shown in Fig. 3. The repeating unit cell consists of
N, = Ng= N, =30 cubic subcells and the resulting volume fraction of the material is: vy=0.19. Due to
the symmetry that exists in all three orthogonal directions, the resulting lattice block effectively exhibits
a cubic symmetry. The micromechanically computed effective stiffness matrix C* is given by Eq. (A.2) of
Appendix A. It is readily seen that by ignoring the negligibly small elements in this matrix, cubic symmetry
is actually obtained.

The next type of a lattice block has been considered by Zhou et al. (2004). These authors analyzed alu-
minum lattice blocks that consist of a pyramidal core structure and triangular planer truss faces. The unit
cell of this lattice block is identical with that of Wallach and Gibson (2001). The repeating unit cell of Zhou
et al. (2004) is shown in Fig. 4 and its micromechanical analysis has been carried out by its division into
N, = Ng= N, = 34 cubic subcells, resulting in a material volume fraction of vy = 0.11. The overall elastic

Fig. 2. The repeating unit cell with N, = Ny = N, = 16 subcells, that models the cellular solid with open cells. The material volume
fraction is: vy = 0.16.
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Fig. 3. The repeating unit cell of the lattice block which represents “‘open cell-diagonal” cellular solid. It is micromechanically analyzed
with N, = Ny = N, = 30 subcells. The material volume fraction is: vy = 0.19.

Fig. 4. The repeating unit cell of the lattice block of Zhou et al. (2004) is micromechanically analyzed with N, = Ng = N, = 34 subcells.
The material volume fraction is: vy =0.11.

behavior of the present lattice block is represented by the micromechanically predicted effective stiffness
matrix C* that is given in Appendix A by Eq. (A.3). If the small value elements in this matrix are ignored,
the resulting effective behavior that is represented by this matrix is orthotropic. It should be noted that the
Young’s modulus in the 3-direction (£} = 2180 MPa) is about four time higher than the moduli in the other
directions (E] = 522 and E; = 520 MPa).

The lattice block of Zhou et al. (2004) can be modified by replacing the horizontal layers by square and
diagonal square arrays. The repeating unit cell of such a lattice block, referred to as ““square-diagonal”,
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Fig. 5. The modified repeating unit cell of the lattice block of Zhou et al. (2004), referred to as ‘‘square-diagonal”, is
micromechanically analyzed with N, = Ny = N, = 34 subcells. The material volume fraction is: vy = 0.09.

is presented in Fig. 5. This modification results in a material volume fraction of vy = 0.09. The resulting
effective stiffness matrix is given in Appendix A by Eq. (A.4). Again, if the small value elements of this
matrix are ignored, the resulting stiffness resembles the behavior of a transversely isotropic material
whose axis of symmetry is oriented in the x; direction. Nevertheless, this is not so because
Chu 7 (¢ +¢33) /2.

Consider next a lattice block whose repeating unit cell is shown in Fig. 6. It shows a material with two
types of diagonal strips which is, following Deshpande et al. (2001), referred to as an “octet’ configuration.

Fig. 6. The repeating unit cell of the octet lattice block is micromechanically analyzed with N, = Ny = N, = 26 subcells. The material
volume fraction is: vy = 0.13.
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Fig. 7. The repeating unit cell of the lattice block with hexagonal arrays is micromechanically analyzed with N, =24, Ny =18 and
N, = 28 subcells. The material volume fraction is: vy = 0.17.

The resulting volume fraction of the material is: vy = 0.13 and the effective stiffness matrix is given by Eq.
(A.5). Here too, disregarding the small elements in the matrix shows that this lattice block behaves effec-
tively as an orthotropic material.

Finally, let us consider a lattice block with a hexagonal array that forms the horizontal planes which are
connected by spatial members. The arrangement of the latter, which has a tetragonal topology, has been
discussed by Chiras et al. (2002). Its repeating unit cell appears in Fig. 7 which results in a material volume
fraction of vy=0.17 and an effective stiffness matrix given by Eq. (A.6). It is readily seen that this lattice
block is effectively characterized by an orthotropic material.

3.2. Elastoplastic lattice blocks

Elastoplastic behavior of lattice blocks is obtained when the material is loaded beyond its yield stress. In
order to study the behavior under these circumstances, the previous aluminum alloy is assumed to behave
as an elastic perfectly plastic material whose yield stress in simple tension is: ¥ = 90 MPa (and a yield strain
of 0.16%). It should be mentioned that the present approach can handle elastoplastic strain-hardening
materials. The perfectly plastic behavior assumption enables the examination of the global lattice block re-
sponse in the plastic region by comparing it with the simple elastoplastic response of its parent solid
material.

Our study of the response of elastoplastic lattice blocks starts with the simple configuration of open cells
that was presented in Fig. 2. Fig. §(a) exhibits the response of this lattice block to a uniaxial stress loading
in the 1-direction (uniaxial loadings in directions 2 and 3 can be performed in the same manner providing
identical responses). It is readily observed that contrary to the aluminum material, the composite response
exhibit a slight strain hardening behavior. Fig. 8(b) shows the initial yield surface of the lattice block for a
combined Gy — a1 loading. The value of initial yielding at ,, = 0 obtained from this graph is 0.06 Y which
is consistent with the yielding point which is observed in Fig. §(a). Fig. 8(c) shows the average stresses
011 = 0 = 033 that are generated by the application of a temperature rise to 100 °C, while constraining
the lattice block such that all average strains are kept equal to zero. According to Eq. (8), the critical tem-
perature for the initiation of yielding at the present circumstances is 54 °C which is consistent with the value
observed from Fig. 8(c). A careful check of the stress values generated by the temperature application (be-
yond 100 °C) reveals a slight hardening in the average stress—temperature response of the lattice block.
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Fig. 8. (a) Uniaxial stress—strain response, (b) initial yield surface and (c) stress—temperature response of the elastoplastic lattice block
whose repeating unit cell was shown in Fig. 2.

As will be apparent in the following, the inelastic behavior of lattice blocks may exhibit unexpected
behavior. Hence, in order to carefully analyze this behavior let us proceed to a slightly more complicated
configuration than the one shown in Fig. 2. To this end, consider the lattice block whose repeating unit cell
is shown in Fig. 9 in which two crossing diagonal elements have been added to the top and bottom faces.
Fig. 10(a) shows the uniaxial stress responses in the 1- and 2-directions. It is clearly observed that loading of
the lattice block in the 1-direction exhibits a strain hardening over the entire range of applied strain. Load-
ing in the 2-direction, on the other hand, can be performed up to a strain of €, = 0.445% (where
G2, = 8.7 MPa), after which the stress—strain curve abruptly drops (namely, AGy, A€, < 0) and the compu-
tation process diverges indicating a structural instability. This peculiar behavior can be explained by
observing the somewhat similar phenomena that takes place in nonlinear structures. As discussed by Majid
(1972), load—deformation relations of nonlinear structures may exhibit at certain value of deformation a
falling curve which indicates a failure of the elastic—plastic structure. The highest ordinate on this curve
indicates the pre-mechanism state of failure. In the case of inelastic lattice block it appears that under a
loading of certain direction and magnitude, the structure losses its stiffness and instability takes place
namely, the load carrying capacity is lost. This situation is well exhibited by Fig. 10(a) which shows the
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2 3

Fig. 9. The repeating unit cell of the lattice block of Fig. 2 in which diagonal strips have been added to the lower and upper surfaces. It
is micromechanically analyzed with N, = Ng= N, = 16 subcells. The material volume fraction is: vy = 0.22.

ability of the lattice block to sustain loading in the 1-direction, while a loss of stability occurs when it is
loaded in the 2 or 3-direction. This inability of the lattice block to carry further loading resembles the limit
load of plastic structures which is a property of the considered system. This property depends on the sys-
tem’s geometry and material behavior. The limit load of the lattice block is readily predicted by the micro-
mechanical analysis which provides a design tool. Fig. 10(b) shows the initial yield surfaces of the present
lattice block when loaded in the 1-2 and 2-3 directions. Finally, Fig. 10(c) shows the resulting stresses when
the lattice block of Fig. 9 is subjected to a rising temperature, while keeping all its average stains equal to
zero. Initial yielding due to temperature rise takes place, according to Eq. (8), at 7= 43 °C. Beyond this
temperature ¢; and 6., = 633 reach the value of 4.5 and 8 MPa, respectively, after which an abrupt drop
in these stresses take place with the divergence of the computational procedure indicating a structural insta-
bility similar to the mechanical loading case discussed before.

Let us consider the elastoplastic behavior of the “open cell-diagonal’ lattice block with cubic symmetry
whose repeating unit cell was shown on Fig. 3. Its elastoplastic response and initial yield surface are shown
in Fig. 11. Here it is possible to load the lattice block up to a strain of about €;; = é,; = €3 = 0.25%, after
which an abrupt drop and a divergence take place indicating an instability of the structure. The initial yield
surface is smooth and resembles the yield surface of an isotropic material.

In Fig. 12, the uniaxial stress—strain curves and the initial yield surfaces are shown for the elastic-plastic
lattice block of Zhou et al. (2004) the repeating unit cell of which has been presented in Fig. 4. It is readily
seen that whereas the response in the 3-direction can be computed over the entire range of deformation, the
elastoplastic response in the 2-direction exists up to €, = 0.36% after which the stability of the structure is
lost. The uniaxial stress behavior of the lattice block in the 1-direction is quite similar to its behavior in the
2-direction and therefore it is not shown. This is also expressed by the observation that the initial yield sur-
face 633 — 1, (not shown in Fig. 12 (b)) is rather close to the 633 — 65, surface. The induced average strains
due to these uniaxial stress loadings in the 2- and 3-direction are shown in Fig. 13. The appreciable devi-
ations from linearity due to the inelastic effects can be clearly observed. Let the lattice block of Zhou et al.
(2004) be subjected to a temperature rise while keeping all average strains equal to zero. The initial yielding
caused by this temperature elevation can be determined by employing Eq. (8) which provides the value of
51.7 °C. Fig. 14 exhibits the resulting average stresses induced by this temperature rise. It can be observed
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Fig. 10. (a) Uniaxial stress—strain responses in the 1- and 2-directions, (b) initial yield surfaces, and (c) stress—temperature response of
the elastoplastic lattice block whose repeating unit cell was shown in Fig. 9.
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Fig. 11. (a) Uniaxial stress—strain responses in the 1, 2 and 3-directions, and (b) initial yield surface of the elastoplastic “open cell-
diagonal” lattice block whose repeating unit was shown in Fig. 3.
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Fig. 12. (a) Uniaxial stress—strain response in the 2- and 3-directions, and (b) initial yield surfaces of the elastoplastic lattice block of
Zhou et al. (2004) whose repeating unit was shown in Fig. 4.
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Fig. 13. (a) The resulting average strains induced by the uniaxial stress loading applied in the (a) 2-direction and (b) 3-direction of the
elastoplastic lattice block of Zhou et al. (2004) whose repeating unit was shown in Fig. 4.

that slightly beyond the yield temperature instability of the lattice block occurs. Here too, the deviations
from linearity can be well detected.

Finally, the initial yield surfaces of the lattice blocks whose repeating unit cells have been presented in
Figs. 5-7 are shown in Fig. 15. In Fig. 15(a) the yield surface a;; — 33 coincides with ;; — 5, since the
responses in 2- and 3-direction are identical. Due to the cubic symmetry of the lattice block of Fig. 6,
Fig. 15(b) presents just one type of initial yield surface. This initial yield surface resembles the one presented
by Deshpande et al. (2001) for the octet-truss lattice. The three initial yield surfaces that are shown in Fig.
15(c) reflect the fact that the lattice block of Fig. 7 is fully orthotropic.

Damage surfaces of lattice blocks can be generated by employing Eq. (11). For the types of lattice blocks
considered in this investigation, results show that these surfaces are quite close to the corresponding initial
yield surfaces.
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Fig. 14. Stress—temperature response of the elastoplastic lattice block of Zhou et al. (2004) whose repeating unit was shown in Fig. 4.
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Fig. 15. Initial yield surfaces of: (a) square—diagonal (Fig. 5), (b) octet (Fig. 6), and (c) hexagonal (Fig. 7) lattice blocks.
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3.3. Lattice blocks with negative Poisson’s ratios

A three-dimensional analysis of a structure that is cable to generate negative Poisson’s ratios has been
presented by Choi and Lakes (1995). It is based on the analysis of spatial struts and curved beams. In
the following, we employ the present micromechanical analysis to analyze and predict the negative Pois-
son’s ratios of a lattice block the repeating unit cell of which is shown in Fig. 16. This lattice block is based
on three re-entrant configurations in the three orthogonal directions. These configurations are capable to
generate the requested negative Poisson’s ratios. The micromechanical analysis has been employed by
assuming that the lattice block material is identified by the elastic aluminum alloy whose properties have
been given previously. The analysis predicts that the overall behavior of this lattice block is described by
a cubic symmetry with three independent constants and its effective stiffness matrix C* is shown by Eq.
(A.7) of Appendix A. In particular, the following three effective Poisson’s ratios can be readily established
from C*:

* _ * _ * —
Vi, = Vi3 = V3 = —0.7

It should be noted that since the three effective Young’s moduli Ej, E; and E; are equal
(E} = E5 = E; = 193.5 MPa), the general requirements, Jones (1975), that

are satisfied.
3.4. Two-phase lattice blocks with negative coefficients of thermal expansion

As previously mentioned, the effective coefficients of thermal expansion of lattice blocks consisting of a
single parent material are identical to those of the material itself. It is possible however to construct lattice

Fig. 16. The repeating unit cell of a lattice block which consists of three re-entrant configurations in the three orthogonal directions
that generate negative Poisson’s ratios. The repeating unit cell is micromechanically analyzed with N, = Ny = N, = 30 subcells. The
material volume fraction is: vy = 0.09.
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blocks that consist of two distinct materials such that the effective coefficients of thermal expansion are
negative although the coefficients of thermal expansion of the two parent materials are positive. In the
two-dimensional case, Kalamkarov and Kolpakov (1997) proposed a framework consisting of materials
whose thermal expansion coefficients are positive, that can generate negative coefficients of thermal
expansion.

Here, we propose two configurations of two-phase lattice blocks, whose repeating unit cell are shown in
Fig. 17, that can generate negative effective coefficients of thermal expansion. The Young’s moduli,
Poisson’s ratios and coefficients of thermal expansion of phase 1 and 2 are given in Table 1. The microme-
chanical analysis of the repeating unit of Fig. 17(a) predicts that the effective coefficients of thermal expan-
sion in the 1- and 2-directions are negative and given, respectively, by: —1.9 x 107® and —1.1 x 1076 °C~".
The analysis of Fig. 17(b), on the other hand, predicts a negative effective coefficient of thermal expan-
sion in the 1-direction of —1.8 x 107%°C~! whereas in the 2- and 3-direction the effective coefficients are
positive.

The negative coefficient of thermal expansion a lattice block can be best explained by referring to Fig.
17(b). This configuration consists of two pyramids with a common plane. The common plane contains four

(a)
3 2 %

Fig. 17. The repeating unit cell of two-phase lattice blocks that can generate negative effective coefficients of thermal expansion. The
repeating unit cell is micromechanically analyzed with N, =25, Ny = N, = 24 subcells. Phase 2 is depicted by the darker regions. (a) A
configuration that generates negative coefficients of thermal expansions in the 1- and 2-directions. The volume fractions of phase 1 and
2 are 0.076 and 0.032, respectively. (b) A configuration that generates a negative coefficient of thermal expansion in the 1-direction. The
volume fractions of phase 1 and 2 are 0.076 and 0.019, respectively.

Table 1

Material constants of the two parent phases of the lattice blocks whose effective coefficients of thermal expansion are negative
Young’s modulus (GPa) Poisson’s ratio Coefficient of thermal expansion (10-6°C~1)

Material 1 1 0.45 1

Material 2 10 0.2 10
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members with high coefficient of thermal expansion. By applying a temperature increase, the common plane
expands yielding a ““‘mechanical” contraction normal to the plane. This contraction overcomes the expan-
sion due to the temperature increase thus yielding a negative coefficient of thermal expansion of the lattice
block in the 1-direction.

To conclude this section, it should be noted that in the present investigation we focus on the relation
between the microstructure and global behavior of the lattice block. On the other hand, it is obvious that
the volume fraction does not qualitatively affect the overall characteristics of the lattice block. Hence the
drawn conclusions reported above are valid irrespective of the various values of the volume fraction used
in this paper.

4. Conclusions

Lattice blocks are periodic structures in which their repeating unit cells are usually analyzed by consid-
ering the beams and columns that form these cells. In the present paper an alternative approach for the
analysis of lattice blocks is presented. According to this continuum mechanics-based approach, the lattice
blocks are analyzed by implementing a micromechanical procedure (which has been developed for the pre-
diction of the behavior of multi-phase composites) whose veracity has been previously established in several
circumstances. In order to save computer memory and execution time, a special strategy has been imple-
mented according to which the micromechanical procedure is applied only to filled regions of the repeating
unit cell that forms the lattice block. The global elastic and elastoplastic behaviors of several types lattice
blocks have been shown.

A particular advantage of the use of a micromechanical approach in the investigation of the behavior
of a composite material (in our case a multi-phase lattice block) is expressed by the fact that the analysis
relies on the properties of the individual constituents, which are usually isotropic, and their relative vol-
ume ratios. Hence one does not need to consider anisotropic yield or damage criteria nor anisotropic
inelastic flaw rules in order to investigate the global behavior of the composite. The global anisotropic
behavior is merely a byproduct of the micromechanical analysis. The present approach provides a quan-
titative vehicle which is capable of predicting the elastic and inelastic properties of a lattice block. The
analysis can be used by a material designer in order to compare the performance of various configura-
tions with respect to a specific required property (e.g. the effective Young’s modulus, yield point, type
of anisotropy, etc...).

Extension of the present micromechanical approach to investigate the buckling and the large deforma-
tion of lattice blocks are topics for a future research.
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Appendix A

The effective stiffness matrix of the lattice block that represents the behavior of the open cell material of
Fig. 2 is given by
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C*(MPa)

(3660 286 286 O
3660 286 0

3660 0

180

sym.

oS O o O

180

180 |

S O O o O
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(A.1)

The effective stiffness matrix of the lattice block that represents the behavior of the open cell-diagonal
configuration of Fig. 3 is given by

3570 753 753 0.05 —-0.13 —0.137
3570 753 0.13 —-0.05 -0.13
C* (MPa) = 3570 0.13 —-0.13 -0.05 (A2)
607 0.11 0.11
607 —0.11
| sym. 607 |

The effective stiffness matrix of the lattice block that is discussed by Zhou et al. (2004) and shown in Fig.

4 is given by

722 360 389 0.06 —-0.21 0.1 T
713 369 0.27 0.01 0.1
C* (MPa) — 2450 0.25 -0.09 -0.02 (A3)
349 0.04 0.06
353 —0.06
| sym. 340 |

The effective stiffness matrix of the “square—diagonal” lattice block of whose repeating unit cell is shown

in Fig. 5.
r 722 369 —0.14 -0.12 0.75 7]
1430 254 -041 -0.17 0.51
C* (MPa) = 1430 —0.02 0.02 0.10 (A4)
186 —0.23 0.09
340 —0.16
| sym. 340 |

The effective stiffness matrix of the octet lattice block whose repeating unit cell is shown in Fig. 6.

[1320 681 681 0 0 0 1
1320 690 -0.92 0.15 0.15
1320 —-0.92 0.15 0.15

641 —-0.07 —-0.07

639 0.07

L sym. 639

C*(MPa) =
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The effective stiffness matrix of the lattice block with hexagonal strips whose repeating unit cell is shown
in Fig. 7.

[ 948 506 533 0 0 0 T
1320 1240 O 0 0
. 1490 0 0 0
C"(MPa) = 3y 0 0 (A.6)
373 0
| sym. 294 |

The effective stiffness matrix of the lattice block with orthogonal re-entrant configurations whose repeat-
ing unit cell is shown in Fig. 16.

r452 —186 —186 0 0 07
452 —186 O 0 0
452 0 0 0
C*'(MPa) = (A7)
21 0 0
21 0
| sym. 2.1
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